Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Shi-Fan Wang, ${ }^{\text {a }}$ * Li-Jun Zhou ${ }^{\text {b }}$ and Xian Yang ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Pharmaceutical Engineering, School of Ocean, Hainan University, Haikou 570228, People's Republic of China, and ${ }^{\text {b/Laboratory for Drug Design and Synthesis, }}$ School of Ocean, Hainan University, Haikou 570228, People's Republic of China

Correspondence e-mail: wangsf777@163.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.046$
$W R$ factor $=0.140$
Data-to-parameter ratio $=18.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography All rights reserved

(E)-4-(4-Hydroxy-3-methoxyphenyl)but-3-en-2-one

The title compound, $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3}$, was synthesized from 4-hydroxy-3-methoxybenzaldehyde and acetone. The molecule has a high degree of conjugation throughout the system and intermolecular hydrogen bonds connect adjacent molecules to form one-dimensional chains.

Comment

α, β-Unsaturated ketones are an important class of pharmaceutical intermediates and have extensive application in the synthesis of natural products and drugs by 1,4 addition. As a precursor for further synthesis, we have synthesized the title compound, (I).

(I)

All the bond lengths and angles (Table 1) are within normal ranges (Allen et al., 1987) and the structural data confirm the E configuration about the $\mathrm{C} 3=\mathrm{C} 4$ double bond. Atoms C 2 , $\mathrm{C} 3, \mathrm{C} 4$ and O 1 constitute a well defined plane and the benzene ring plane is inclined at 5.34 (1) ${ }^{\circ}$ to this plane (Fig. 1). A weak intermolecular $\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 1$ hydrogen bond links adjacent molecules, forming one-dimensional chains (Fig. 2).

Experimental

4-Hydroxy-3-methoxybenzaldehyde ($3.04 \mathrm{~g}, 20 \mathrm{mmol}$) was dissolved in 25 ml of acetone and 12 ml of dilute aqueous NaOH solution (10%) was added to the acetone solution with stirring. The mixture was allowed to stand overnight at room temperature and then the mixture was acidified with dilute aqueous HCl to give $(E)-4-(4-$ hydroxy-3-methoxyphenyl)but-3-en-2-one as a yellow solid (yield 73%). The resultant precipitate was filtered off, washed with water and recrystallized from ethanol and dichloromethane (2:1), in air over a period of four days. After about three-quarters of the original solvent had evaporated, large colourless prisms of (I) were obtained (yield 61\%).

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3}$	$D_{x}=1.279 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=192.21$	Mo $K \alpha$ radiation
Monoclinic, $P 2_{1} / c$	Cell parameters from 2995
$a=9.602(5) \AA$	reflections
$b=7.780(4) \AA$	$\theta=2.6-27.9^{\circ}$
$c=13.478(7) \AA$	$\mu=0.09 \mathrm{~mm}^{-1}$
$\beta=97.466(8)^{\circ}$	$T=293(2) \mathrm{K}$
$V=998.2(9) \AA^{3}$	Prism, colourless
$Z=4$	$0.36 \times 0.28 \times 0.22 \mathrm{~mm}$

Received 30 November 2005
Accepted 16 January 2006

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: none
8188 measured reflections
2355 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.140$
$S=1.04$
2355 reflections
131 parameters
H -atom parameters constrained

1816 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.020$
$\theta_{\text {max }}=28.4^{\circ}$
$h=-12 \rightarrow 12$
$k=-10 \rightarrow 10$
$l=-17 \rightarrow 17$

$$
\begin{aligned}
& \begin{array}{l}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.07 P)^{2}\right. \\
\quad \\
\quad+0.1629 P] \\
\quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=0.20 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.19 \mathrm{e} \AA^{-3} \\
\text { Extinction correction: } S H E L X L 97 \\
\text { Extinction coefficient: } 0.024(5)
\end{array}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

O2-C8	$1.3556(18)$	C10-C9	$1.3785(19)$
C4-C3	$1.336(2)$	C8-C7	$1.380(2)$
C4-C5	$1.459(2)$	C8-C9	$1.394(2)$
C5-C6	$1.388(2)$	C6-C7	$1.379(2)$
C5-C10	$1.400(2)$	O1-C2	$1.2243(18)$
O3-C9	$1.3686(17)$	C3-C2	$1.454(2)$
O3-C11	$1.413(2)$	C2-C1	$1.490(2)$
C3-C4-C5	$127.19(15)$	O3-C9-C10	$125.48(13)$
C6-C5-C10	$118.55(12)$	O3-C9-C8	$114.63(12)$
C6-C5-C4	$122.60(13)$	C10-C9-C8	$119.89(13)$
C10-C5-C4	$118.85(13)$	C7-C6-C5	$120.63(14)$
C9-O3-C11	$117.63(12)$	C4-C3-C2	$124.57(15)$
C9-C10-C5	$120.79(13)$	O1-C2-C3	$119.85(15)$
O2-C8-C7	$118.81(13)$	O1-C2-C1	$119.74(14)$
O2-C8-C9	$121.70(13)$	C3-C2-C1	$120.40(14)$
C7-C8-C9	$119.48(13)$	C6-C7-C8	$120.64(14)$

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}^{2}-\mathrm{H} 2 \cdots \mathrm{O1}^{\mathrm{i}}$	0.82	2.08	$2.772(2)$	141

Symmetry code: (i) $x+1,-y+\frac{1}{2}, z-\frac{1}{2}$.

H atoms were positioned geometrically $[\mathrm{C}-\mathrm{H}$ distances of 0.93 $\left(\mathrm{Csp}^{2}-\mathrm{H}\right)$ and $0.96 \AA$ (methyl), and $\left.\mathrm{O}-\mathrm{H}=0.82 \AA\right] . U_{\text {iso }}(\mathrm{H})$ values were set equal to $x U_{\text {eq }}$ (carrier atom), where $x=1.2$ for CH and 1.5 for O and methyl C.

Figure 1
The structure of the title compound (1), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2
A view of part of the crystal packing. Dashed lines indicate hydrogen bonds.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2000); software used to prepare material for publication: SHELXTL.

This project is sponsored by the Scientific Research Foundation of Hainan University, China.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.

